题干
证明不等式:
$$
n!<
\left(
\frac
{n+1}
{2}
\right)^n\quad (n>1)
$$
解答
基例
$n=2$时,$2<2.25$
归纳假设
设$n=k$时成立
$$
k!<
\left(
\frac
{k+1}
{2}
\right)^k
$$
归纳推理
$$
\begin{aligned}
\left(
\frac
{(k+1)+1}
{2}
\right)^{(k+1)}
&=\left(
\frac
{k+2}
{2}
\right)^k+\left(
\frac
{k+2}
{2}
\right)\\
&>\left(
\frac
{k+2}
{2}
\right)^k+\left(
\frac
{k+2}
{\left(\frac{k+2}{k+1}\right)^{k+1}}
\right)\\
&=
\frac
{(k+2)^k}
{2^k}
\frac
{\left(k+1\right)^{k+1}}
{\left(k+2\right)^{k}}
\\
&= \left(\frac
{k+1}
{2}\right)^k
\left(k+1\right)\\
&> (k+1)k!=(k+1)!
\end{aligned}
$$
得证.
非数学归纳法方法(AM-GM不等式)
如果使用AM-GM不等式:若干正数的算术平均值不小于其几何平均.则可以更容易求解.
$$
\sqrt[n]{x_1\cdot x_2\cdots x_n} \le \frac{x_1+x_2+\cdots+x_n}{n}
$$
根据求和公式
$$
\begin{aligned}
1+2+\cdots+n &= \frac{n(n+1)}{2}\\
\frac{1+2+\cdots+n}{n} &= \frac{n+1}{2}.
\end{aligned}
$$
左侧为算数平均因此小于几何平均数.
$$
\sqrt[n]{1\cdot2\cdots n}\le \frac{1+2+\cdots+n}{n}=\frac{n+1}{2}.
$$
最左边与最右边取n次幂.
$$
n!\le\left(
\frac
{n+1}
{2}
\right)^n
$$
AM-GM不等式取等号的条件为所有数相等,因此当且仅当$n=1$时取等号.